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A cascade chirality transfer process has been achieved by the palladium-catalyzed reaction of substituted propargylic carbonates with phenols.
The reaction proceeds in a highly enantiospecific manner to produce chiral cyclic carbonates, which supports the existence of the
z-propargylpalladium intermediate in the reaction mechanism. The (E)- and (Z)-selectivity of the products can be controlled by choice of the
phosphine ligand.

Palladium-catalyzed reactions of propargylic compounds with in contrast to the well-known palladium-catalyzed allylation
soft nucleophiles serve as a useful method for the construc-process, which proceeds via the formation ot-allylpal-
tion of carbor-carbon and carberheteroatom bondsin ladium complex followed by addition of a nucleophile with
these processes, allenylpalladium complexes are formedoverall retention of configuratiohthe stereochemical course
initially, and these complexes undergo secondary reactionsof the palladium-catalyzed nucleophilic substitution reac-
with nucleophiles to formr-allylpalladium intermediates. tions of asymmetric propargylic substrates is unknown
Since the first report by Tsuji in 1985a large variety of (Scheme 1}.

reactions in this family have been developed and applied in

the preparation of various organic substariceslowever, _

to the best of our knowledge, studies examining stereochem- Scheme 1

ical features of these processes have not been reported. Thus,
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(1) For reviews on palladium-catalyzed reactions of propargylic com- R/\)*\R' 4 R/\J//\R, —Nu R/\)*\R'
pounds, see: (a) Tsuji, J.; Minami,Acc. Chem. Red.987,20, 140. (b)
Minami, |.; Yuhara, M.; Watanabe, H.; Tsuji,J.Organomet. Cheni987, X . Pd*
334, 225. (c) Tsuiji, J.; Mandai. Bngew. Chem., Int. Ed. Endl995,34, he— pd) Pd H  No \l/
2589. o o = >=-;/R, — R/Y\R'

(2) Tsuji, J.; Watanabe, H.; Minami, |.; Shimizu,J. Am. Chem. Soc. R' R N
1985,107, 2196. Nu' v

(3) For recent examples of similar types of palladium-catalyzed reactions Nu'™ . Lo
of propargylic carbonates with nucleophiles, see: (a) Fournier-Nguefack, R7X*R transferring chirality ?
C.; Lhoste, P.; Sinou, DBynlett1996, 553. (b) Yoshida, M.; Nemoto, H.; Nu
lhara, M.Tetrahedron Lett1999,40, 8583. (c) Labrosse, J.-R.; Lhoste, P.;
Sinou, D.Tetrahedron Lett1999,40, 9025. (d) Labrosse, J.-R.; Lhoste,
P.; Sinou, DOrg. Lett.200Q 2, 527. (e) Kozawa, Y.; Mori, MTetrahedron
Iigt tifgg.l@ﬁzb;‘ﬁii; g) Egg?c\;\slzeYJgothys;zetlgahg?r:ggelbiﬁ,ze%(zozn Recently studies in our laboratory have uncovered a novel

Lett. 2003, 44, 557. palladium-catalyzed cascade reaction of propargylic carbon-
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Table 1. Palladium-Catalyzed Reaction of Racemic Table 2. Palladium-Catalyzed Reaction of Chiral Propargylic
Propargylic Carbonateka—d with p-MethoxyphenoRa?P Carbonated a,b with Phenols2a—e
o / 0 o
- methoxyphenol HG )k
M= 0 OPMP OPMP HO PCOMe __ 2a2
— — ¢, - OAr OAr
ha) E = meth)Il
= penty JaaR= methyl (S)-1a R = methyl (95% ee) (Z,9) 3aa-3ae
Je R = phenyl 3ba R = pentyl S)}-1b R = pentyl (98% ee R = methyl (ER- 3““3”
1d R = cyclohexyl 3ca R = phenyl (8} pentyl ( ) (Z,S_)-3ba Yy (ER)_'”‘?:gtahyl
R = pentyl R = pentyl
entry  substrate ligand  product vyield (%)° Z:E
yield ee (%)°f
1 la dppe 3aa® 66 10:19 entry substrate phenol product (%) Z,S:E,RY Z,S/E,R
2 la dppp 3aa 47 1:3.3 1 (S)}la 2aR =4-methoxy 3aa 66 10:1 95/95
3 la dppb 4aa’ 40 6.4:1 2 (S)-1a 2aR'=4-methoxy 3aa 47 1:3.3 95/95
4 la dppf 4aa 42 8:1h 3b (S)-1la 2b R’'=2-methoxy 3ab¢ 65 7:1 94/94
5 la PPhsd 4aa 20 (30) Z only ‘5‘; g;ia gb E{’ = f-mettﬁory gabg 32 E,é?lonly gé/gs
f 19 -la (03 = 4-metnyi ac e N
6 1b dppe ba’ 81 8.7:1 &  (Sela 2cR =4methyl 3ac 36 ERonly 94
7 lc dppe 3cal 32 (47) Zonly 7 (S-1a 2d R’ = 4-fluoro 3ad" 54 ZSonly 94
8 1d dppe tr 8b (S)-1a  2e 1-naphthol 3ae? 51 291 93/93
) ) ) 9b (S)-1b 2aR'=4-methoxy 3ba 81 3.7:1 98/98
@ Reactions are carried out in the presence of 5 mol %ddad)-CHCl; 10¢  (S)-1b 2aR' =4-methoxy 3ba 41 E,Ronly 95
and 20 mol % ligand in dioxane at 58C for 10—24 h under C®
atmosphere? PMP = p-methoxyphenyl¢ The yields in parentheses are a All reactions are carried out in the presence of 5 mol %{dtzh)-CHCl;
based on recovered starting materfdlsing 40 mol % of PPh ¢ The and 20 mol % ligand in dioxane at 3C for 8—24 h under C@atmosphere.

stereochemistry of each product was determined by using the NOESY P dppe was used as a ligarfddppp was used as a ligartlAll isomers
technique. See Supporting InformatidThe stereochemistry of each  were isolated® Enantiomeric excesses are determined by using chiral HPLC
product was tentatively assigned by comparison of its NMR spectra with (CHIRALPAK OD-H or OJ-H).f Absolute configurations ofZ,S)- and

(2)- and E)-3aa 9 Ratios were determined by the isolation of each isomer. (E,R)-3aawere each determined by using Kusumi's method, and other
h Ratios were determined Bi# NMR integration of methine proton onthe  products were tentatively assigned on the basis of specific rot&tibime
epoxide ring. stereochemistry of the products were tentatively assigned by comparisons
with the NMR spectra of (€ and (B-3aa. " Stereochemistry was determined

by using the NOESY technique.

ates with phenols, which involves a @@limination—
fixation step and affords phenoxy-substituted cyclic carbon-
ates® In continuing investigations in this area, we have

discovered that reactions of chiral substrates, which possessg generated selectively (entries8). Reaction of the pentyl-

asymmetric propargylic centers, proceed in a highly enan- substituted substratéb in the presence of dppe produces
tiospecific manner to give chiral cyclic carbonates via an (2)- and (E)-3bain 81% yield and a 3.7:1 ratio (entry 6)

overall cascade chirality transfer process. Below we descr'beSubstratelc, which has a phenyl group at the propargylic

thtaoprgllmlr}ary gasulft of thlz effort. i ¢ . position, reacts to affor@cain low yield (32% and 47%
ur initial studies focused on reactions of racemic prop- yield based on recovered starting material, in entry 7).

argylic ca_rbonat_e_&a—d, which POSSESS substituents at the Finally, only a trace amount of products is generated by the
propargylic position (Table 1). Reaction of the methyl- reaction ofld, which has a bulky cyclohexyl group at the
substituted substratéa with p-methoxyphenoPRa in the propargylic cénter (entry 8)

presence of 5 mol % Rfiiba)-CHCL; and 20 mol % dppe We next examined the reactions enantiomerically enriched,

in dioxa_ne at 50C under a C@atmosphere fo_r 12 h yields chiral propargylic carbonates (Table 2). When substi@je (
the cyc_l|c carbonates (2)- and.(E)—3aaa 10:1 ratio and 1a (95% ee), prepared fronBJ-3-butyn-2-ol, is subjected
66% yield (entry 1). Interestingly, we found that the to reaction withp-methoxyphenoRa in the presence of 5

stereochemical course of this reaction is revers&& & ; ;
. . ) mol % Pd(dba}-CHCIl; and 20 mol % dppe, chiral cyclic
1:3.3 in entry 2) when dppp is used as the ligand. When carbonates (2)- andESQ-:%aa are produced with 10:7-

(4) For reviews on stereochemical studies of palladium-catalyzed reac- selectivity (entry 1). ,The absolute Conflgurat_lonSb)('(and_
tions of allylic compounds, see: (a) Tsuji, Tetrahedron1986,42, 4361. (E)-3aawere determined to bBandR, respectively, by their

(b) Consiglio, G.; Waymouth, R. MChem. Re»1989,89, 257. (c) Trost,  conversion into and NMR analysis of their MTPA esters (see
B. M. Angew. Chem., Int. Ed. Engl989, 28, 1173. (d) Heumann, A.;

Réglier, M. Tetrahedron1995,51, 975. (e) Trost, B. M.; Vranken, D. L. Supporting Information). It is noteworthy that the enantio-

V. (C;lem. kRev199hG,96H 39|5.II ) A " he allad meric excess of bottZ(S)- and (ER)-3aais 95%. The results
5) Itis known that chiral allenes can be synthesized from the palladium- ; ; ;
catalyzed reaction of chiral propargylic compounds via stereoselegi®e S clearly show thatcascade reactions of chiral propargylic
attack of palladium catalyst; see: (a) Elsevier: C. J.; Stehouwer, P. M.; substrates occur with complete transferring chirality
Westmijze, H.; Vermeer, H. Org. Chem1983,48, 1103. (b) Marshall, J. addition, reaction of (S) 1@ the presence of dppp selec-

A.; Adams, N. D.J. Org. Chem1997,62, 367. (c) Dixneuf, P.; Guyot, T.; . . . .

Ness, M. D.; Roberts, S. Mchem. Commuri997, 2083, (d) Konno, T.; tively affords (E,R)-3aawithout any loss of enantiomeric

Ta?élﬁw)a?M'ﬁ _IshlhﬁraihT.; Y'T\\Arganaka, g?em. Il_ettZE%OOE, 1@388-1 20 purity (entry 2). Similar highly enantiospecific cascade
a oshida, ., Ihara, ngew. em., Int. =] y y . . _

616. (b) Yoshida, M.: Fujita. M.. Ishii, T.; Ihara, NI. Am. Chem. Soc. reactions take place betweén and various phenol@b—e

2003,125, 4874. to afford the corresponding cyclic carbonatésS)- and

dppb, dppf, and PRtare employed as ligands, the reaction
does not yield cyclic carbonates. Rather, tAedpoxidedaa

3326 Org. Lett., Vol. 5, No. 18, 2003



Scheme 2. Proposed Reaction Mechanism
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(E,R)-3ab—ae(entries 3—8). Substrate (S)-1198% ee),

allenylpalladium comple%? On the basis of NMR studies,

having a pentyl propargylic substituent, is also converted Ogoshi and Kurosawa have recently proposed an alternate

stereoselectively and enantiospecifically ZoS)- and E,R)-
3ba (98% ee in entriy 9 and 95% ee in entry 10).
A plausible mechanism, which accounts for the highly

mechanism for this process that involves the intermediacy
of a z-propargylpalladium comple%d Our finding that
reactions of chiral propargylic substrates are highly enan-

enantiospecific nature of these processes, is shown in Scheméospecific offers strong support for the Ogosliurosawa
2. In the first step of the reaction, regio- and stereoselective mechanism. Accordingly, if reactions of the chiral propar-

anti §y2' attack of the palladium catalysbn propargylic
carbonate (S)-1akes place to yield the chiral allenylpalla-
dium complex5. Next, transformation of comples to
m-propargylpalladium comple& (an equilibrium process),
is followed by selective addition of phenol to the central
carbon ofr-propargyl moiety to form the chiral palladacy-
clobutene7. Complex7 is then converted to the allylpalla-
dium complex8 by intramolecular proton transfer without
loss of the chirality. The comple&is delocalized to afford
m-allylpalladium complexe® and 10, and CQ fixation
followed by cyclization from these complexes Vi and
12 produces the cyclic carbonate (E,R)ahd (Z,S)-3,

respectively. The cause of the phosphine ligand effect (dppe

vs dppp) on stereochemistry is not clear, but it could be
associated with an alteration of the-o—x equilibriunt
betweenz-allylpalladium complexe® and108

gylic carbonates (S)-proceed via a route involving the
intermediacy of palladiumcarbene complexek3, complete
loss of stereochemical integrity would be observed.

In conclusion, the effort described above has led to the
discovery of a palladium-catalyzed cascade chirality transfer
reaction occurring between chiral propargylic carbonates and
phenols. The process yields cyclic carbonate products in a
highly enantiospecific manner. Furthermore, the stereose-
lectivity of these reactions can be altered by the choice of
the phosphine ligand. Continuing studies probing the scope,
mechanism, and synthetic applications of this reaction are
now in progress.
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Supporting Information Available: Experimental pro-
cedures and characterization data for all products; data for
NOESY correlations of4)- and E)-3aa,4aa, and Z)-3ad;
procedure for determining the absolute configuratiorZg$)¢
and (E,R)-3ga. This material is available free of charge via
the Internet at http://pubs.acs.org.
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